Effectively Reasoning about Infinite Sets in Answer Set Programming
نویسندگان
چکیده
In answer set programming (ASP), one does not allow the use of function symbols. Disallowing function symbols avoids the problem of having logic programs which have stable models of excessively high complexity. For example, Marek, Nerode, and Remmel showed that there exist finite predicate logic programs which have stable models but which have no hyperarithmetic stable model. Disallowing function symbols also avoids problems with the occurs check that can lead to wrong answers in logic programs. Of course, by eliminating function symbols, one loses a lot of expressive power in the language. In particular, it is difficult to directly reason about infinite sets in ASP. Blair, Marek, and Remmel [BMR08] developed an extension of logic programming called set based logic programming. In the theory of set based logic programming, the atoms represent subsets of a fixed universe X and one is allowed to compose the one-step consequence operator with a monotonic idempotent operator (miop) O so as to ensure that the analogue of stable models are always closed under O. We let SP denote the set of fixed points of finite unions of the sets represented by the atoms of P under the miops associated with P . We shall show that if there is a coding scheme which associates to each element A ∈ SP a code c(A) such that there are effective procedures, which given two codes c(A) and c(B) of elements A,B ∈ SP , will (i) decide if A ⊆ B, (ii) decide if A ∩B = ∅, and (iii) produce the codes of the closures of A ∪ B and of A ∩ B under the miop operators associated with P , then we can effectively decide whether an element A ∈ SP is a stable model of P . Thus in such a situation, we can effectively reason about the stable models of P even though SP contains infinite sets. Our basic example is the case where all the sets represented by the atoms of P are regular languages but many other examples are possible such as when the sets involved are certain classes of convex sets in R. ? This is an updated and expanded version of [MR09]. ?? email:[email protected] ? ? ? email: [email protected]
منابع مشابه
Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملReasoning about Actions with Temporal Answer Sets
In this paper we define a Temporal Action Theory through a combination of Answer Set Programming and Dynamic Linear Time Temporal Logic (DLTL). DLTL extends propositional temporal logic of linear time with regular programs of propositional dynamic logic, which are used for indexing temporal modalities. In our language, general temporal constraints can be included in domain descriptions. We defi...
متن کاملTowards Predicate Answer Set Programming via Coinductive Logic Programming
Answer Set Programming (ASP) is a powerful paradigm based on logic programming for non-monotonic reasoning. Current ASP implementations are restricted to “grounded range-restricted function-free normal programs” and use an evaluation strategy that is “bottom-up” (i.e., not goal-driven). Recent introduction of coinductive Logic Programming (co-LP) has allowed the development of topdown goal eval...
متن کاملIntegrating Semantic Web Reasoning and Answer Set Programming
We integrate an expressive class of description logics (DLs) and answer set programming by extending the latter to support inverted predicates and infinite domains, features that are present in most DLs. The extended language, conceptual logic programming (CLP) proves to be a viable alternative for intuitively representing and reasoning nonmonotonically, in a decidable way, with possibly infini...
متن کاملComputing Fuzzy Answer Sets Using dlvhex
Fuzzy answer set programming has been introduced as a framework that successfully combines the concepts of answer set programming and fuzzy logic. In this paper, we show how the fuzzy answer set semantics can be mapped onto the semantics for HEX-programs, which are nonmonotonic logic programs under the answer set semantics that support the use of external function calls. By using the DLVHEX rea...
متن کامل